

Cryptography and Network Security

Sixth Edition by William Stallings

Chapter 3

Block Ciphers and the Data Encryption Standard "All the afternoon Mungo had been working on Stern's code, principally with the aid of the latest messages which he had copied down at the Nevin Square drop. Stern was very confident. He must be well aware London Central knew about that drop. It was obvious that they didn't care how often Mungo read their messages, so confident were they in the impenetrability of the code."

> —Talking to Strange Men, Ruth Rendell

Stream Cipher

Encrypts a digital data stream one bit or one byte at a time

Examples:

Autokeyed Vigenère cipherVernam cipher

In the ideal case a one-time pad version of the Vernam cipher would be used, in which the keystream is as long as the plaintext bit stream

> If the cryptographic keystream is random, then this cipher is unbreakable by any means other than acquiring the keystream

• Keystream must be provided to both users in advance via some independent and secure channel

• This introduces insurmountable logistical problems if the intended data traffic is very large For practical reasons the bitstream generator must be implemented as an algorithmic procedure so that the cryptographic bit stream can be produced by both users

> It must be computationally impractical to predict future portions of the bit stream based on previous portions of the bit stream

The two users need only share the generating key and each can produce the keystream

Block Cipher

A block of plaintext is treated as a whole and used to produce a ciphertext block of equal length

Typically a block size of 64 or 128 bits is used

As with a stream cipher, the two users share a symmetric encryption key The majority of network-based symmetric cryptographic applications make use of block ciphers

(a) Stream Cipher Using Algorithmic Bit Stream Generator

(b) Block Cipher

Figure 3.1 Stream Cipher and Block Cipher

TR D am 100 Ĵ O D D an

Figure 3.2 General *n*-bit-*n*-bit Block Substitution (shown with n = 4)

Table 3.1

Encryption and Decryption Tables for Substitution Cipher of Figure 3.2

Plaintext	Ciphertext		Ciphertext	Plaintext
0000	1110		0000	1110
0001	0100	and the second	0001	0011
0010	1101		0010	0100
0011	0001		0011	1000
0100	0010		0100	0001
0101	1111		0101	1100
0110	1011	State State	0110	1010
0111	1000	12111	0111	1111
1000	0011		1000	0111
1001	1010		1001	1101
1010	0110		1010	1001
1011	1100		1011	0110
1100	0101		1100	1011
1101	1001		1101	0010
1110	0000		1110	0000
1111	0111		1111	0101

Feistel Cipher

 Proposed the use of a cipher that alternates substitutions and permutations

Substitutions

• Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

Permutation

 No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed

- Is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions
- Is the structure used by many significant symmetric block ciphers currently in use

Diffusion and Confusion

- Terms introduced by Claude Shannon to capture the two basic building blocks for any cryptographic system
 - Shannon's concern was to thwart cryptanalysis based on statistical analysis

Diffusion

- The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext
- This is achieved by having each plaintext digit affect the value of many ciphertext digits

Confusion

- Seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible
- Even if the attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce the key

Feistel Cipher Structure

Feistel Cipher Design Features

Block size

- Larger block sizes mean greater security but reduced encryption/decryption speed for a given algorithm
- Key size
 - Larger key size means greater security but may decrease encryption/decryption speeds
- Number of rounds
 - The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security
- Subkey generation algorithm
 - Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis

- Round function F
 - Greater complexity generally means greater resistance to cryptanalysis
- Fast software encryption/decryption
 - In many cases, encrypting is embedded in applications or utility functions in such a way as to preclude a hardware implementation; accordingly, the speed of execution of the algorithm becomes a concern
- Ease of analysis
 - If the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength

Feistel Example

Figure 3.4 Feistel Example

Data Encryption Standard (DES)

- Issued in 1977 by the National Bureau of Standards (now NIST) as Federal Information Processing Standard 46
- Was the most widely used encryption scheme until the introduction of the Advanced Encryption Standard (AES) in 2001
- Algorithm itself is referred to as the Data Encryption Algorithm (DEA)
 - Data are encrypted in 64-bit blocks using a 56-bit key
 - The algorithm transforms 64-bit input in a series of steps into a 64-bit output
 - The same steps, with the same key, are used to reverse the encryption

Figure 3.5 General Depiction of DES Encryption Algorithm

DES Encryption Algorithm

Rou	ınd	Ki	Li	Ri	
II	Р		5a005a00	3cf03c0f	
1		1e030f03080d2930	3cf03c0f	bad22845	
2	2	0a31293432242318	bad22845	99e9b723	
3	;	23072318201d0c1d	99e9b723	0bae3b9e	
4	Ļ	05261d3824311a20	0bae3b9e	42415649	
5	5	3325340136002c25	42415649	18b3fa41	
6	5	123a2d0d04262a1c	18b3fa41	9616fe23	
7	'	021f120b1c130611	9616fe23	67117cf2	
8	;	1c10372a2832002b	67117cf2	cl1bfc09	
9)	04292a380c341f03	cl1bfc09	887fbc6c	
10	0	2703212607280403	887fbc6c	600f7e8b	
1	1	2826390c31261504	600f7e8b	£596506e	
11	2	12071c241a0a0f08	f596506e	738538b8	
1.	3	300935393c0d100b	738538b8	c6a62c4e	
14	4	311e09231321182a	c6a62c4e	56b0bd75	
1:	5	283d3e0227072528	56b0bd75	75e8fd8f	
10	6	2921080b13143025	75e8fd8f	25896490	
IP-	-1		da02ce3a	89ecac3b	

Table 3.2

DES Example

(Table can be found on page 75 in textbook)

Note: DES subkeys are shown as eight 6-bit values in hex format

Round		δ
9	cllbfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	le07d4091ce2e6dc	
16	75e8fd8f25896490	32
	lce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Table 3.3 Avalanche Effect in DES: Change in Plaintext

Round		δ	Round		δ
	02468aceeca86420	0	9	cllbfc09887fbc6c	34
	02468aceeca86420			548f1de471f64dfd	
1	3cf03c0fbad22845	3	10	887fbc6c600f7e8b	36
	3cf03c0f9ad628c5			71f64dfd4279876c	
2	bad2284599e9b723	11	11	600f7e8bf596506e	32
	9ad628c59939136b			4279876c399fdc0d	
3	99e9b7230bae3b9e	25	12	f596506e738538b8	28
	9939136b768067b7			399fdc0d6d208dbb	
4	0bae3b9e42415649	29	13	738538b8c6a62c4e	33
	768067b75a8807c5			6d208dbbb9bdeeaa	
5	4241564918b3fa41	26	14	c6a62c4e56b0bd75	30
	5a8807c5488dbe94			b9bdeeaad2c3a56f	
6	18b3fa419616fe23	26	15	56b0bd7575e8fd8f	33
	488dbe94aba7fe53			d2c3a56f2765c1fb	
7	9616fe2367117cf2	27	16	75e8fd8f25896490	30
	aba7fe53177d21e4			2765c1fb01263dc4	
8	67117cf2c11bfc09	32	IP -1	da02ce3a89ecac3b	30
	177d21e4548f1de4			ee92b50606b62b0b	

Table 3.4 Avalanche Effect in DES: Change in Key

Table 3.5

Average Time Required for Exhaustive Key Search

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 decryptions/s	Time Required at 1013 decryptions/s
56	DES	2 56 ≈ 7.2 × 10 16	2 55 ns = 1.125 years	1 hour
128	AES	2 128 ≈ 3.4 × 10 38	2 127 ns = 5.3 × 10 21 years	5.3 × 10 17 years
168	Triple DES	2 168 ≈ 3.7 × 10 50	2 167 ns = 5.8 × 10 33 years	5.8 × 10 29 years
192	AES	2 192 ≈ 6.3 × 10 57	2 191 ns = 9.8 × 10 40 years	9.8 × 10 36 years
256	AES	2 256 ≈ 1.2 × 10 77	2 255 ns = 1.8 × 10 60 years	1.8 × 10 56 years
26 characters (permutation)	Monoalphabetic	26! = 4 × 10 26	2×1026 ns = 6.3 × 109 years	6.3 × 10 6 years

Strength of DES

Timing attacks

- One in which information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertexts
- Exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs
- So far it appears unlikely that this technique will ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES

Block Cipher Design Principles: Number of Rounds

The greater the number of rounds, the more difficult it is to perform cryptanalysis In general, the criterion should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key search attack

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search

Block Cipher Design Principles: Design of Function F

 The heart of a Feistel block cipher is the function F

The algorithm should have good avalanche properties

 The more nonlinear F, the more difficult any type of cryptanalysis will be

Strict avalanche criterion (SAC)

 The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function

States that any output bit j of an S-box should change with probability 1/2 when any single input bit i is inverted for all i, j Bit independence criterion (BIC)

> States that output bits j and k should change independently when any single input bit i is inverted for all i, j, and k

Block Cipher Design Principles: Key Schedule Algorithm

- With any Feistel block cipher, the key is used to generate one subkey for each round
- In general, we would like to select subkeys to maximize the difficulty of deducing individual subkeys and the difficulty of working back to the main key
- It is suggested that, at a minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion

Summary

- Traditional Block
 Cipher Structure
 - Stream ciphers
 - Block ciphers
 - Feistel cipher
- The Data Encryption Standard (DES)
 - Encryption
 - Decryption
 - Avalanche effect

- The strength of DES
 - Use of 56-bit keys
 - Nature of the DES algorithm
 - Timing attacks
- Block cipher design principles
 - DES design criteria
 - Number of rounds
 - Design of function F
 - Key schedule algorithm